Программирование Arduino. Arduino и совместимые языки программирования Команды arduino ide

Начать свой путь в IT бывает очень сложно хотя бы просто потому, что глядя на окружающие технологии невозможно отделить «железный» интерес от программного. С одной стороны - желание создать устройство с безупречным внешним видом, множеством датчиков и безграничными возможностями, с другой - таинство обработки данных, стремление максимально увеличить быстродействие, не пренебрегая функциональностью. Arduino - первый шаг к большим изобретениям, не требующий ни глубоких знаний схемотехники, ни опыта в программировании.

Что такое Arduino

Если называть вещи своими именами, то Arduino - это конструктор для тех, кому надоело созидать бесполезные образы и захотелось хоть немного наделить их жизнью. В самом простейшем случае Arduino - печатная плата, на которой расположен контроллер, кварцевый генератор, АЦП/ЦАП, несколько разъёмов, диодов и кнопок. Остальное - дело рук хозяина: хотите - создавайте робота, хотите - программно-аппаратную платформу для «умного» дома, ну или забудьте про практическую пользу и развлекайтесь .

Конечно, в зависимости от того. насколько далеко вы хотите зайти в своих экспериментах, хотите ли вы получать фильтрованное удовольствие или сделать из Arduino платформу для собственного заработка, вам придётся совершенствоваться и в проектировании железа, и в изучении языков программирования. О последнем сегодня чуть подробнее.

Arduino достаточно ограниченная платформа в плане возможностей программирования, особенно в сравнении с Raspberry Pi. В силу того, что порог входа неприлично низкий (базовый Tutorial занимает 3 листа формата A4), то рассчитывать на изобилие языков без подключения дополнительных модулей не приходится. За основу здесь принят C/C++ , но с использованием различных IDE и библиотек вы получите доступ к оперированию Python, C#, Go, а также таким детским развлечениям, как Snap! и ArduBlock. О том как, когда и кому их использовать, поговорим далее.

C/C++

Базовый язык платформы Arduino, который с некоторыми доработками и упрощениями используется в стандартной программной оболочке. Найти все доступные команды «для новичка» можно , но никто не мешает вам воспользоваться исходными возможностями языка C++, никаких надстроек не потребуетс. Если же есть желание поиграть с «чистым» C, то к вашим услугам программа , предназначенная, как следует из названия, для взаимодействия ОС Windows и МК серии AVR, которые и используются на Arduino. Более подробное руководство можете прочитать вот .

Ardublock

Временно отойдем от языков взрослых к любимому ребятней языку Scratch, а вернее к его адаптации - Ardublock. Здесь всё тоже самое, но с адаптацией к вашей платформе: цветные блоки, конструктор, русские названия, простейшая логика. Такой вариант здорово подойдет даже тем, кто с программированием не знаком вовсе. Подобно тому, как в языке Logo вы можете перемещать виртуальную черепашку по виртуальной плоскости, здесь с помощью нехитрых операций вы можете заинтересовать ребенка реальной интерпретацией его программных действий.

Да, кстати, для использования необходимо на вашу стандартную среду Arduino IDE установить . Последние версии лучше не хватать, они довольно сложные, для начала подойдет датированная концом 2013 года. Для установки скачанный файл переименовываем в «ardublock-all» и запихиваем в папку «Мои документы/Arduino/tools/ArduBlockTool/tool». Если её не существует - создаем. Если что-то не поняли, то вот более подробно.

Snap!

По сравнению с Ardublock, Snap! имеет расширенные возможности в виде дополнительных блоков, возможности использования списков и функций. То есть Snap! в общем и целом уже похож на взрослый язык программирования, не считая, что вам по прежнему необходимо играть в конструктор кода.

Для того, чтобы использовать этот язык, придется сходить на сайт snap4arduino.org и скачать необходимые компоненты для вашей ОС. Инструкции по установке, использованию и видеопримеры ищите здесь же.

Python

Формально программировать на Arduino вы можете используя хоть язык Piet, просто потому что при должном упорстве вы скомпилируете в машинный код что угодно. Но в силу того, что Python - один из наиболее популярных языков с практически оптимальным сочетанием сложность\возможности, то обойти стороной его применяемость в Arduino было бы нелепо. Начать изучение Python вы можете с нашего бесплатного .

Итак, для этого вам понадобится библиотеки PySerial (ранее, возможно, вы использовали её для общения с портами компьютера) и vPython . О том, как правильно всё настроить и заставить в конечном счёте работать, можете соответственно почитать и .

Go и другие языки.

Подобно тому, как Arduino взаимодействует с Python через библиотеку PySerial, он может взаимодействовать и с , и c Java , и с HTML , и с чем только захотите. Arduino - достаточно популярная платформа, чтобы такой банальный вопрос, как выбор удобного языка, не остановил очередного исследователя. Единственное, что требуется от владельца этой маленькой платы - задумать что-нибудь удивительно интересное, а удобный инструмент неизбежно найдётся.

Этот урок дает минимальные знания, необходимые для программирования систем Ардуино на языке C. Можно только просмотреть его и в дальнейшем использовать как справочную информацию. Тем, кто программировал на C в других системах можно пропустить статью.

Повторю, что это минимальная информация. Описание указателей, классов, строковых переменных и т.п. будет дано в последующих уроках. Если что-то окажется непонятным, не беспокойтесь. В дальнейших уроках будет много примеров и пояснений.

Структура программы Ардуино.

Структура программы Ардуино достаточно проста и в минимальном варианте состоит из двух частей setup() и loop().

void setup() {

void loop() {

Функция setup() выполняется один раз, при включении питания или сбросе контроллера. Обычно в ней происходят начальные установки переменных, регистров. Функция должна присутствовать в программе, даже если в ней ничего нет.

После завершения setup() управление переходит к функции loop(). Она в бесконечном цикле выполняет команды, записанные в ее теле (между фигурными скобками). Собственно эти команды и совершают все алгоритмические действия контроллера.

Первоначальные правила синтаксиса языка C.

; точка с запятой Выражения могут содержать сколь угодно много пробелов, переносов строк. Признаком завершения выражения является символ ”точка с запятой ”.

z = x + y;
z= x
+ y ;

{ } фигурные скобки определяют блок функции или выражений. Например, в функциях setup() и loop().

/* … */ блок комментария , обязательно закрыть.

/* это блок комментария */

// однострочный комментарий , закрывать не надо, действует до конца строки.

// это одна строка комментария

Переменные и типы данных.

Переменная это ячейка оперативной памяти, в которой хранится информация. Программа использует переменные для хранения промежуточных данных вычислений. Для вычислений могут быть использованы данные разных форматов, разной разрядности, поэтому у переменных в языке C есть следующие типы.

Тип данных Разрядность, бит Диапазон чисел
boolean 8 true, false
char 8 -128 … 127
unsigned char 8 0 … 255
byte 8 0 … 255
int 16 -32768 … 32767
unsigned int 16 0 … 65535
word 16 0 … 65535
long 32 -2147483648 … 2147483647
unsigned long 32 0 … 4294967295
short 16 -32768 … 32767
float 32 -3.4028235+38 … 3.4028235+38
double 32 -3.4028235+38 … 3.4028235+38

Типы данных выбираются исходя из требуемой точности вычислений, форматов данных и т.п. Не стоит, например, для счетчика, считающего до 100, выбирать тип long. Работать будет, но операция займет больше памяти данных и программ, потребует больше времени.

Объявление переменных.

Указывается тип данных, а затем имя переменной.

int x; // объявление переменной с именем x типа int
float widthBox; // объявление переменной с именем widthBox типа float

Все переменные должны быть объявлены до того как будут использоваться.

Переменная может быть объявлена в любой части программы, но от этого зависит, какие блоки программы могут ее использовать. Т.е. у переменных есть области видимости.

  • Переменные, объявленные в начале программы, до функции void setup(), считаются глобальными и доступны в любом месте программы.
  • Локальные переменные объявляются внутри функций или таких блоков, как цикл for, и могут использоваться только в объявленных блоках. Возможны несколько переменных с одним именем, но разными областями видимости.

int mode; // переменная доступна всем функциям

void setup() {
// пустой блок, начальные установки не требуются
}

void loop() {

long count; // переменная count доступна только в функции loop()

for (int i=0; i < 10;) // переменная i доступна только внутри цикла
{
i++;
}
}

При объявлении переменной можно задать ее начальное значение (проинициализировать).

int x = 0; // объявляется переменная x с начальным значением 0
char d = ‘a’; // объявляется переменная d с начальным значением равным коду символа ”a”

При арифметических операциях с разными типами данных происходит автоматическое преобразование типов данных. Но лучше всегда использовать явное преобразование.

int x; // переменная int
char y; // переменная char
int z; // переменная int

z = x + (int) y; // переменная y явно преобразована в int

Арифметические операции.

Операции отношения.

Логические операции.

Операции над указателями.

Битовые операции.

& И
| ИЛИ
^ ИСКЛЮЧАЮЩЕЕ ИЛИ
~ ИНВЕРСИЯ
<< СДВИГ ВЛЕВО
>> СДВИГ ВПРАВО

Операции смешанного присваивания.

Выбор вариантов, управление программой.

Оператор IF проверяет условие в скобках и выполняет последующее выражение или блок в фигурных скобках, если условие истинно.

if (x == 5) // если x=5, то выполняется z=0
z=0;

if (x > 5) // если x >
{ z=0; y=8; }

IF … ELSE позволяет сделать выбор между двух вариантов.

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

{
z=0;
y=0;
}

ELSE IF – позволяет сделать множественный выбор

if (x > 5) // если x > 5, то выполняется блок z=0, y=8;
{
z=0;
y=8;
}

else if (x > 20) // если x > 20, выполняется этот блок
{
}

else // в противном случае выполняется этот блок
{
z=0;
y=0;
}

SWITCH CASE - множественный выбор. Позволяет сравнить переменную (в примере это x) с несколькими константами (в примере 5 и 10) и выполнить блок, в котором переменная равна константе.

switch (x) {

case 5:
// код выполняется если x = 5
break;

case 10:
// код выполняется если x = 10
break;

default:
// код выполняется если не совпало ни одно предыдущее значение
break;
}

Цикл FOR . Конструкция позволяет организовывать циклы с заданным количеством итераций. Синтаксис выглядит так:

for (действие до начала цикла;
условие продолжения цикла;
действие в конце каждой итерации) {

// код тела цикла

Пример цикла из 100 итераций.

for (i=0; i < 100; i++) // начальное значение 0, конечное 99, шаг 1

{
sum = sum + I;
}

Цикл WHILE . Оператор позволяет организовывать циклы с конструкцией:

while (выражение)
{
// код тела цикла
}

Цикл выполняется до тех пор, пока выражение в скобках истинно. Пример цикла на 10 итераций.

x = 0;
while (x < 10)
{
// код тела цикла
x++;
}

DO WHILE – цикл с условием на выходе.

do
{
// код тела цикла
} while (выражение);

Цикл выполняется пока выражение истинно.
BREAK – оператор выхода из цикла. Используется для того, чтобы прервать выполнение циклов for, while, do while.

x = 0;
while (x < 10)
{
if (z > 20) break; // если z > 20, то выйти из цикла
// код тела цикла
x++;
}

GOTO – оператор безусловного перехода.

goto metka1; // переход на metka1
………………
metka1:

CONTINUE - пропуск операторов до конца тела цикла.

x = 0;
while (x < 10)
{
// код тела цикла
if (z > 20) continue; // если z > 20, то вернуться на начало тела цикла
// код тела цикла
x++;
}

Массивы.

Массив это область памяти, где последовательно хранятся несколько переменных.

Объявляется массив так.

int ages; // массив из 10 переменных типа int

float weight; // массив из 100 переменных типа float

При объявлении массивы можно инициализировать:

int ages = { 23, 54, 34, 24, 45, 56, 23, 23, 27, 28};

Обращаются к переменным массивов так:

x = ages; // x присваивается значение из 5 элемента массива.
ages = 32; // 9 элементу массива задается значение 32

Нумерация элементов массивов всегда с нуля.

Функции.

Функции позволяют выполнять одни и те же действия с разными данными. У функции есть:

  • имя, по которому ее вызывают;
  • аргументы – данные, которые функция использует для вычисления;
  • тип данных, возвращаемый функцией.

Описывается пользовательская функция вне функций setup() и loop().

void setup() {
// код выполняется один раз при запуске программы
}

void loop() {
// основной код, выполняется в цикле
}

// объявление пользовательской функции с именем functionName
type functionName(type argument1, type argument1, … , type argument)
{
// тело функции
return();
}

Пример функции, вычисляющей сумму квадратов двух аргументов.

int sumQwadr (int x, int y)
{
return(x* x + y*y);
}

Вызов функции происходит так:

d= 2; b= 3;
z= sumQwadr(d, b); // в z будет сумма квадратов переменных d и b

Функции бывают встроенные, пользовательские, подключаемые.

Очень коротко, но этих данных должно хватить для того, чтобы начать писать программы на C для систем Ардуино.

Последнее, что я хочу рассказать в этом уроке, как принято оформлять программы на C. Думаю, если вы читаете этот урок в первый раз, стоит пропустить этот раздел и вернутся к нему позже, когда будет что оформлять.

Главная цель внешнего оформления программ это улучшить читаемость программ, уменьшить число формальных ошибок. Поэтому для достижения этой цели можно смело нарушать все рекомендации.

Имена в языке C.

Имена, представляющие типы данных, должны быть написаны в смешанном регистре. Первая буква имени должна быть заглавная (верхний регистр).

Signal, TimeCount

Переменные должны быть записаны именами в смешанном регистре, первая буква строчная (нижний регистр).

Рубрика: . Вы можете добавить в закладки.

Каждый язык программирования имеет набор команд управления, обеспечивающих многократное выполнение одного и того же кода (цикл), выбор подходящего фрагмента кода (условия) и инструкции для выхода из текущего фрагмента кода.

Arduino IDE позаимствовал с C/C++ большинство необходимых элементов управления. Их синтаксис идентичен с C. Ниже мы в двух словах опишем их синтаксис.

Оператор if

Оператор if позволяет выполнить определенный фрагмент программы в зависимости от результата проверки определенного условия. Если условие выполняется, то код программы будет выполнен, если же условие не выполняется, то код программы будет пропущен. Синтаксис команды if выглядит следующим образом:

If(условие) { инструкция1; инструкция2; }

Условием может быть любое сравнение переменной или значения, возвращаемое функцией. Основным критерием условия if является то, что ответ всегда должен быть или истина (true) или ложь (false). Примеры условий для оператора if:

if(a!=2) { } if(x<10) { } if(znak==’B’) { }

Внутри скобок, которые прописаны внутри условия, можно выполнить код.

Люди, которые приступают к изучению программирования, часто делают ошибку, приравнивая значение указанной переменной с помощью одного знака «=». Такая запись однозначно указывает на присвоение значения переменно, и, следовательно, условие всегда будет «true», то есть выполняться. Проверка того, что переменная равна определенному значению, всегда обозначается двойным знаком равно (==).

В качестве условия можно использовать состояние функции, например:

If(init()) { Serial.print(«ок»); }

Приведенный выше пример будет выполнен следующим образом: на первом этапе вызывается функция init(). Эта функция возвращает значение, которое будет интерпретировано как «true» или «false». В зависимости от результата сравнения будет отправлен текст «ок» или ничего не будет отправлено.

Оператор if…else

Расширенным оператором if является оператор if….else. Он обеспечивает выполнение одного фрагмента кода, когда условие выполняется (true), и выполнение второй фрагмент кода, если условие не выполняется (false). Синтаксис операторf if….else выглядит следующим образом:

If (условие) { // команда A } else { // команда B }

Команды «A» будут выполняться только в том случае, если условие выполнено, команда «B» будет выполняться, когда условие не выполнено. Одновременное выполнение команды «A» и «B» невозможно. Следующий пример показывает, как использовать синтаксис if…else:

If (init()) { Serial.print(«ок»); } else { Serial.print(«ошибка»); }

Подобным образом можно проверить правильность выполнения функции и информировать об этом пользователя.

Обычной практикой является отрицание условия. Это связано с тем, что функция, которая выполнена правильно возвращает значение 0, а функция, которая отработала неверно по какой-то причине, возвращает ненулевое значение.

Объяснение такого «усложнения жизни» — просто. Если функция выполнена правильно, то это единственная информация, которая нам нужна. В случае же ошибки, стоит иногда понять, что пошло не так, почему функция не выполнена правильно. И здесь на помощь приходят числа, отличающиеся от нуля, т. е. с помощью цифровых кодов мы можем определить тип ошибки. Например, 1 — проблема с чтением какого-то значения, 2 — нет места в памяти или на диске и т. д.

В последнем измененном примере показано, как вызвать функцию, которая возвращает ноль при правильном выполнении:

If (!init()) { Serial.print(«ок»); } else { Serial.print(«ошибка»); }

Оператор switch case

Оператор if позволяет проверить только одно условие. Иногда необходимо выполнить одно из действий в зависимости от возвращаемого или прочитанного значения. Для этого идеально подходит оператор множественного выбора switch. Ниже показан синтаксис команды switch:

Switch (var) { case 1: //инструкция для var=1 break; case 2: // инструкция для var=2 break; default: // инструкция по умолчанию (если var отличается от 1 и 2) }

В зависимости от значения переменной var выполняются инструкции в определенных блоках. Метка case означает начало блока для указанного значения. Например, case 1: означает, что данный блок будет выполнен для значения переменной var, равной один.

Каждый блок должен быть завершен с помощью команды break. Он прерывает дальнейшее выполнение оператора switch. Если команду break пропустить, то инструкции будут выполняться и в последующих блоках до команды break. Метка default не является обязательной, как и else в команде if. Инструкции, расположенные в блоке default выполняются только тогда, когда значение переменной var не подходит ни к одному шаблону.

Часто бывает так, что одни и те же инструкции должны быть выполнены для одного из нескольких значений. Это можно достичь следующим образом:

Switch (x) { case 1: //инструкция для x=1 break; case 2: case 3: case 5: // инструкция для x=2 или 3 или 4 break; case 4: // инструкция для x=4 break; case 6: // инструкция для x=6 break; default: // инструкция по умолчанию (если х отличается от 1,2,3,4,5,6) }

В зависимости от значения переменной x будет выполнен соответствующий блок инструкций. Повторение case 2: case 3: case 5: информирует компилятор о том, что если переменная x имеет значение 2 или 3 или 5, то будет выполнен один и тот же фрагмент кода.

Оператор for

Оператор for используется для многократного выполнения одного и того же кода. Часто необходимо выполнить одни и те же инструкции, изменив только значение какой-то переменной. Для этого идеально подходит цикл for. Синтаксис команды выглядит следующим образом:

Int i; for(i=0;i<10;i++) { // инструкции для выполнения в цикле }

Первый параметр, приводимый в инструкции for — начальное значение переменной. Еще один элемент — это проверка условия о продолжении выполнения цикла. Цикл выполняется до тех пор, пока выполняется условие. Последний элемент — это изменение значения переменной. Чаще всего мы увеличиваем или уменьшаем ее значение (по необходимости). В этом примере, инструкции, содержащиеся в цикле будут выполняться при i=0…9.

Часто переменная, используемая в цикле объявляется там же:

For(int i=0;i<10;i++) { // инструкции для выполнения в цикле }

Переменная, которая используется для подсчета последующих шагов цикла, может использоваться внутри нее для вызова функции с соответствующими параметрами.

For(int i=10;i>0;i—) { Serial.print(i); // отправятся номера 10,9,8,7,6,5,4,3,2,1 }

Оператор while

Цикл for идеально подходит там, где мы хотим выполнить подсчет. В ситуации, когда необходимо выполнить определенные действия в результате какого-то события, которое не обязательно является предсказуемым (например, мы ждем нажатия кнопки), то мы можем использовать оператор while, который выполняет блок оператора до тех пор, пока выполняется условие. Синтаксис оператора while выглядит следующим образом:

While(условие) { // блок инструкций для выполнения }

Важно, чтобы проверка состояния происходила в начале цикла. Может случиться так, что инструкции внутри цикла while не исполняться никогда. Кроме того, возможно создание бесконечного цикла. Давайте посмотрим два примера:

Int x=2; while(x>5) { Serial.print(x); } —————————————- int y=5; while(y>0) { Serial.print(y); }

Первый блок операторов, расположенный внутри while не выполнится никогда. Переменная x имеет значение два и она не станет больше 5. Во втором примере мы имеем дело с бесконечным циклом. Переменная «y» имеет занчение 5, т. е. больше нуля. Внутри цикла не происходит никакого изменения переменной «y», поэтому цикл никогда не будет завершен.

Это распространенная ошибка, когда мы забываем об изменении параметра, вызывающего прекращение цикла. Ниже приведено два правильных примера применения цикла while:

Int x=0; while(x<10) { //блок инструкций x++; } —————————————- while(true) { if(условие) break; // блок инструкций }

В первом примере мы позаботились об изменении значения переменной, которая проверяется в условии. В результате цикл когда-нибудь завершится. Во втором примере был преднамеренно создан бесконечный цикл. Этот цикл эквивалентен функции loop () в Arduino IDE. Кроме того, внутри цикла введена проверка условия, после выполнения которого цикл завершается командой break.

Оператор do…while

Разновидностью цикла while является цикл do…while. Кроме синтаксиса он отличается местом проверки условия. В случае do…while проверка условия производится после выполнения блока инструкций. Это означает, что блок инструкций в теле цикла выполнится хотя бы один раз. Ниже приведен синтаксис команды do…while:

Do { // блок инструкций } while(условие)

Все, что написано об операторе while относится также и к do…while. Ниже приведен пример использования цикла do…while:

Int x=10; do { // блок инструкций x—; } while(x>0); —————————————- do { // блок инструкций if(условие) break; } while(true);

Оператор break

Оператор break позволяет выйти из цикла (do…while, for, while) и выйти из опции switch. В следующем примере рассмотрим выполнение команды break:

For(i=0;i<10;i++) { if(i==5) break; Serial.print(i); }

Цикл должен быть исполнен для чисел от 0 до 9, но для числа 5 выполняется условие, которое запускает оператор break. Это приведет к выходу из цикла. В результате в последовательный порт (Serial.print) будет отправлены только числа 0,1,2,3,4.

Оператор continue

Оператор continue вызывает прекращение выполнения инструкций цикла (do…while, for, while) для текущего значения и переход к выполнению следующего шага цикла. В следующем примере показано, как работает оператор continue:

For(i=0;i<10;i++) { if(i==5) continue; Serial.print(i); }

Как не трудно заметить, цикл будет выполнен для значения от 0 до 9. Для значения 5 исполнится команда continue, в результате чего инструкции, находящиеся после этой команды выполнены не будут. В результате в последовательный порт (Serial.print) будут отправлены числа 0,1,2,3,4,6,7,8,9.

Оператор return

Оператор return завершает выполнение вызываемой функции и возвращает значение определенного типа. В качестве параметра команды можно указать число, символ или переменную определенного типа. Важно, чтобы возвращаемое значение соответствует типу заявленной функции. В следующем примере показано, как использовать оператор return:

Int checkSensor(){ if (analogRead(0) > 400) { // чтение аналогового входа return 1; // Для значений больше 400 возвращается 1 else{ return 0; // для других возвращается 0 } }

Как вы можете видеть, в одной функции можно использовать несколько операторов return, но сработает всегда только один из них. Допустимо использование оператора return без параметров. Это позволяет досрочно прекратить работу функции, которая не возвращает никакого значения.

Void имя_функции() { инструкция1; if(x==0) return; инструкция2; инструкция3; }

В приведенном выше примере инструкция1 будет выполнять всегда, когда вызывается функция. Выполнение же инструкция2 и инструкция3 зависит от результата команды if. Если условие будет выполнено (true), то будет выполнена команда return и функция завершит работу.

В случае, когда условие не выполнено команда return так же не выполняется, а выполняются инструкции инструкция2 и инструкция3, и после этого функция завершает свою работу.

Оператор goto

Из идеологических соображений необходимо пропустить это описание… Оператор goto является командой, которую не следует использовать в обычном программировании. Он вызывает усложнения кода и является плохой привычкой в программировании. Настоятельно рекомендуем не использовать эту команду в своих программах. Из-за того, что goto есть в официальной документации на сайте arduino.cc приведем его краткое описание. Синтаксис команды goto:

…. goto metka; // перейдите на строку с надписью ‘metka’ ….. …. …. metka: // метка, с которой программа продолжит работу …

Команда позволяет переход к обозначенной метке, т. е. к месту в программе.

Ardublock - это графический язык программирования для Ардуино, предназначенный для начинающих. Эта среда достаточно проста в использовании, ее легко установить, она практически полностью переведена на русский язык. Визуально сконструированную программу,напоминающую блоки...

Прерывания - очень важный механизм Arduino, позволяющий внешним устройствам взаимодействовать с контроллером при возникновении разных событий. Установив обработчик аппаратных прерываний в скетче, мы сможем реагировать на включение или выключение кнопки, нажатие клавиатуры,...

Serial.print() и Serial.println() – это основные функции Arduino для передачи информации от платы ардуино к компьютеру через последовательный порт. На самых популярных платах Arduino Uno, Mega, Nano нет встроенного дисплея, поэтому...

Можно ли заниматься ардуино проектами без самой платы Arduino? Оказывается, вполне. Благодаря многочисленным онлайн сервисам и программам, которые имеют свое название: эмулятор или симулятор Arduino. Самыми популярными представителями таких программ являются...

Serial begin - крайне важная инструкция Arduino, она позволяет установить контроллеру соединение с внешними устройствами. Чаще всего таким «внешним устройством» оказывается компьютер, к которому мы подключаем Arduino. Поэтому Serial begin интенсивней...

Глобальная переменная в Arduino – это переменная, область видимости которой распространяется на всю программу, ее видно во всех модулях и функциях. В этой статье мы рассмотрим несколько примеров использования глобальных переменных,...

Массивы Arduino – это элемент языка, активно используемый программистами для работы с наборами однотипных данных. Массивы есть практически во всех языках программирования, не исключением является и Arduino, синтаксис которого сильно похож...

Данный раздел посвящен книгам из мира Arduino. Для новичков и профессионалов.

Все книги и материалы представлены исключительно в ознакомительных целях, после ознакомления просим вас приобрести цифровую или бумажную копию.

Программы для чтения книг:

  • Книги формата PDF: Adobe Acrobat Reader или PDF Reader .
  • Книги формата DJVU: или Djvu Reader .

Практическая энциклопедия Arduino

В книге обобщаются данные по основным компонентам конструкций на основе платформы Arduino, которую представляет самая массовая на сегодняшний день версия ArduinoUNO или аналогичные ей многочисленные клоны. Книга представляет собой набор из 33 глав-экспериментов. В каждом эксперименте рассмотрена работа платы Arduino c определенным электронным компонентом или модулем, начиная с самых простых и заканчивая сложными, представляющими собой самостоятельные специализированные устройства. В каждой главе представлен список деталей, необходимых для практического проведения эксперимента. Для каждого эксперимента приведена визуальная схема соединения деталей в формате интегрированной среды разработки Fritzing. Она дает наглядное и точное представление - как должна выглядеть собранная схема. Далее даются теоретические сведения об используемом компоненте или модуле. Каждая глава содержит код скетча (программы) на встроенном языке Arduino с комментариями.

Электроника. Твой первый квадрокоптер. Теория и практика

Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей. Подробно изложен принцип работы и процесс настройки систем OSD, телеметрии, беспроводного канала Bluetooth и популярных навигационных модулей GPS Ublox. Рассказано об устройстве и принципах работы интегральных сенсоров и полетного контроллера. Даны рекомендации по подбору оборудования FPV начального уровня, приведен обзор программ для компьютеров и смартфонов, применяемых при настройке оборудования квадрокоптера.

Проекты с использованием контроллера Arduino (2-е изд.)

В книге рассмотрены основные платы Arduino и платы расширения (шилды), добавляющие функциональность основной плате. Подробно описан язык и среда программирования Arduino IDE. Тщательно разобраны проекты с использованием контроллеров семейства Arduino. Это проекты в области робототехники, создания погодных метеостанций, "умного дома", вендинга, телевидения, Интернета, беспроводной связи (bluetooth, радиоуправление).

Во втором издании добавлены проекты голосового управления с помощью Arduino, работа с адресуемыми RGB-лентами, управление iRobot Create на Arduino. Рассмотрены проекты с использованием платы Arduino Leonardo. Приведены пошаговые уроки для начинающих разработчиков.

Изучаем Arduino: инструменты и методы технического волшебства

Книга посвящена проектированию электронных устройств на основе микроконтроллерной платформы Arduino. Приведены основные сведения об аппаратном и программном обеспечении Arduino. Изложены принципы программирования в интегрированной среде Arduino IDE. Показано, как анализировать электрические схемы, читать технические описания, выбирать подходящие детали для собственных проектов. Приведены примеры использования и описание различных датчиков, электродвигателей, сервоприводов, индикаторов, проводных и беспроводных интерфейсов передачи данных. В каждой главе перечислены используемые комплектующие, приведены монтажные схемы, подробно описаны листинги программ. Имеются ссылки на сайт информационной поддержки книги. Материал ориентирован на применение несложных и недорогих комплектующих для экспериментов в домашних условиях.

Быстрый старт. Первые шаги по освоению Arduino

Книга ARDUINO Быстрый старт. Первые шаги по освоению ARDUINO содержит всю информацию для ознакомления с платой Arduino,а также 14 практических экспериментов с применением различных электронных компонентов и модулей.

Быстрый старт с набором Arduinо. Полученные знания, в дальнейшем, дадут возможность создавать свои собственные проекты и с легкостью воплощать их в жизнь.

Arduino, датчики и сети для связи устройств (2-е изд.)

Рассмотрены 33 проекта на основе микроконтроллерной платы Arduino, в которых показано, как сделать, чтобы электронные устройства могли обмениваться между собой данными и реагировать на команды. Показано, как изменить настройки домашнего кондиционера, «позвонив ему» со своего смартфона; как создавать собственные игровые контроллеры, взаимодействующие по сети; как использовать устройства ZigBee, Bluetooth, инфракрасное излучение и обычное радио для беспроводного получения информации от различных датчиков и др. Рассмотрены языки программирования Arduino, Processing и PHP.

Прочитав книгу — «Arduino, датчики и сети для связи устройств», Вы научитесь создавать сети интеллектуальных устройств, которые обмениваются данными и реагируют на команды. Книга идеально подходит для людей, которые стремятся воплотить на практике свои творческие идеи. Вам не надо обладать специальными техническими знаниями и навыками в области электроники, Для начала реализации проектов необходимы только книга, идеи и недорогой набор с контроллером Arduino и некоторыми сетевыми модулями и датчиками.

Arduino Essentials

The Arduino is an open source microcontroller built on a single circuit board that is capable of receiving sensory input from its environment and controlling interactive physical objects. It is also a development environment that allows you to write software to the board, and is programmed in the Arduino programming language. The Arduino has become the most popular microcontroller platform and thus hundreds of projects are being developed using it, from basic to advanced levels.

This book will first introduce you to the most important board models of the Arduino family. You will then learn to set up the Arduino software environment. Next, you will work with digital and analog inputs and outputs, manage the time precisely, establish serial communications with other devices in your projects, and even control interrupts to make your project more responsive. Finally, you will be presented with a complete real-world example by utilizing all the concepts learned so far in the book. This will enable you to develop your own microcontroller projects.

Arduino Development Cookbook

If you want to build programming and electronics projects that interact with the environment, this book will offer you dozens of recipes to guide you through all the major applications of the Arduino platform. It is intended for programming or electronics enthusiasts who want to combine the best of both worlds to build interactive projects.

The single-chip computer board Arduino is small in size but vast in scope, capable of being used for electronic projects from robotics through to home automation. The most popular embedded platform in the world, Arduino users range from school children to industry experts, all incorporating it into their designs.

Arduino Development Cookbook comprises clear and step-by-step recipes that give you the toolbox of techniques to construct any Arduino project, from the simple to the advanced. Each chapter gives you more essential building blocks for Arduino development, from learning about programming buttons through to operating motors, managing sensors, and controlling displays. Throughout, you’ll find tips and tricks to help you troubleshoot your development problems and push your Arduino project to the next level!

Arduino Sketches: Tools and Techniques for Programming Wizardry

Master programming Arduino with this hands-on guide Arduino Sketches is a practical guide to programming the increasingly popular microcontroller that brings gadgets to life. Accessible to tech-lovers at any level, this book provides expert instruction on Arduino programming and hands-on practice to test your skills. You’ll find coverage of the various Arduino boards, detailed explanations of each standard library, and guidance on creating libraries from scratch plus practical examples that demonstrate the everyday use of the skills you’re learning.

Work on increasingly advanced programming projects, and gain more control as you learn about hardware-specific libraries and how to build your own. Take full advantage of the Arduino API, and learn the tips and tricks that will broaden your skillset. The Arduino development board comes with an embedded processor and sockets that allow you to quickly attach peripherals without tools or solders. It’s easy to build, easy to program, and requires no specialized hardware. For the hobbyist, it’s a dream come true especially as the popularity of this open-source project inspires even the major tech companies to develop compatible products.

Arduino and LEGO Projects

We all know how awesome LEGO is, and more and more people are discovering how many amazing things you can do with Arduino. In Arduino and LEGO Projects, Jon Lazar shows you how to combine two of the coolest things on the planet to make fun gadgets like a Magic Lantern RF reader, a sensor-enabled LEGO music box, and even an Arduino-controlled LEGO train set.

* Learn that SNOT is actually cool (it means Studs Not on Top)
* See detailed explanations and images of how everything fits together
* Learn how Arduino fits into each project, including code and explanations

Whether you want to impress your friends, annoy the cat, or just kick back and bask in the awesomeness of your creations, Arduino and LEGO Projects shows you just what you need and how to put it all together.

Arduino Workshop

The Arduino is a cheap, flexible, open source microcontroller platform designed to make it easy for hobbyists to use electronics in homemade projects. With an almost unlimited range of input and output add-ons, sensors, indicators, displays, motors, and more, the Arduino offers you countless ways to create devices that interact with the world around you.

In Arduino Workshop, you’ll learn how these add-ons work and how to integrate them into your own projects. You’ll start off with an overview of the Arduino system but quickly move on to coverage of various electronic components and concepts. Hands-on projects throughout the book reinforce what you’ve learned and show you how to apply that knowledge. As your understanding grows, the projects increase in complexity and sophistication.

C Programming for Arduino

Building your own electronic devices is fascinating fun and this book helps you enter the world of autonomous but connected devices. After an introduction to the Arduino board, you’ll end up learning some skills to surprise yourself.

Physical computing allows us to build interactive physical systems by using software & hardware in order to sense and respond to the real world. C Programming for Arduino will show you how to harness powerful capabilities like sensing, feedbacks, programming and even wiring and developing your own autonomous systems.

C Programming for Arduino contains everything you need to directly start wiring and coding your own electronic project. You’ll learn C and how to code several types of firmware for your Arduino, and then move on to design small typical systems to understand how handling buttons, leds, LCD, network modules and much more.

Arduino для начинающих волшебников

Эта книга о платформе Arduino, которая день ото дня становится все популярнее, и целая армия экспериментаторов-надомников, конструкторов-любителей и хакеров начинает использовать ее для воплощения в жизнь как прекрасных, так и совершенно сумасшедших проектов. С помощью Arduino любой гуманитарий может познакомиться с основами электроники и программирования и быстро начать разработку собственных моделей, не тратя на это значительных материальных и интеллектуальных ресурсов. Arduino объединяет игру и обучение, позволяет создать что-то стоящее и интересное под влиянием внезапного порыва, воображения и любопытства. Эта платформа расширяет возможности креативного человека в сфере электроники, даже если он в ней ничего не смыслит! Экспериментируйте и получайте удовольствие!

Программирование микроконтроллерных плат Arduino/Freeduino

Рассмотрено программирования микроконтроллерных плат Arduino/Freduino. Описана структура и функционирование микроконтроллеров, среда программирования Arduino, необходимые инструменты и комплектующие для проведения экспериментов. Подробно рассмотрены основы программирования плат Arduino: структура программы, команды, операторы и функции, аналоговый и цифровой ввод/вывод данных. Изложение материала сопровождается более 80 примерами по разработке различных устройств: реле температуры, школьных часов, цифрового вольтметра, сигнализации с датчиком перемещения, выключателя уличного освещения и др. Для каждого проекта приведен перечень необходимых компонентов, монтажная схема и листинги программ. На FTP-сервере издательства выложены исходные коды примеров из книги, технические описания, справочные данные, среда разработки, утилиты и драйверы.

Arduino and Kinect Projects

If you’ve done some Arduino tinkering and wondered how you could incorporate the Kinect—or the other way around—then this book is for you. The authors of Arduino and Kinect Projects will show you how to create 10 amazing, creative projects, from simple to complex. You’ll also find out how to incorporate Processing in your project design—a language very similar to the Arduino language.

The ten projects are carefully designed to build on your skills at every step. Starting with the Arduino and Kinect equivalent of «Hello, World,» the authors will take you through a diverse range of projects that showcase the huge range of possibilities that open up when Kinect and Arduino are combined.

Atmospheric Monitoring with Arduino

Makers around the globe are building low-cost devices to monitor the environment, and with this hands-on guide, so can you. Through succinct tutorials, illustrations, and clear step-by-step instructions, you’ll learn how to create gadgets for examining the quality of our atmosphere, using Arduino and several inexpensive sensors.

Detect harmful gases, dust particles such as smoke and smog, and upper atmospheric haze—substances and conditions that are often invisible to your senses. You’ll also discover how to use the scientific method to help you learn even more from your atmospheric tests.

* Get up to speed on Arduino with a quick electronics primer
* Build a tropospheric gas sensor to detect carbon monoxide, LPG, butane, methane, benzene, and many other gases
* Create an LED Photometer to measure how much of the sun’s blue, green, and red light waves are penetrating the atmosphere
* Build an LED sensitivity detector—and discover which light wavelengths each LED in your Photometer is receptive to
* Learn how measuring light wavelengths lets you determine the amount of water vapor, ozone, and other substances in the atmosphere

Руководство по освоению Arduino

Издание представляет собой русскоязычный перевод одного из документов по работе с набором ARDX (Starter Kit for Arduino), предназначенного для экспериментов с Arduino. В документации описано 12 простейших проектов, ориентированных на начальное знакомство с модулем Arduino.

Основная цель этого набора - интересно и с пользой провести время. А помимо этого — освоить разнообразные электронные компоненты путем сборки небольших простых и интересных устройств. Вы получаете работающее устройство и инструмент, позволяющий понять принцип действия.

Большая Энциклопедия Электрика

Самая полная на сегодняшний день книга, в которой вы найдете массу полезной информации, начиная с азов. В книге раскрыты все основные проблемы, с которыми можно столкнуться при работе с электричеством и электрооборудованием. Описание видов кабелей, проводов и шнуров, монтаж и ремонт электропроводки и многое другое.

В книге «Большая энциклопедия электрика» раскрыты все основные проблемы, с которыми можно столкнуться при работе с электричеством и электрооборудованием. Описание видов кабелей, проводов и шнуров, монтаж и ремонт электропроводки и многое другое. Эта книга станет полезным справочником и для электрика-специалиста, и для домашнего умельца.

Эта книга станет полезным справочником и для электрика-специалиста, и для домашнего умельца.

Arduino блокнот программиста

Этот блокнот следует рассматривать, как удобное, лёгкое в использовании руководство по структуре команд и синтаксису языка программирования контроллера Arduino. Для сохранения простоты, были сделаны некоторые исключения, что улучшает руководство при использовании начинающими в качестве дополнительного источника информации — наряду с другими web-сайтами, книгами, семинарами и классами. Подобное решение, призвано акцентировать внимание на использовании Arduino для автономных задач и, например, исключает более сложное использование массивов или использование последовательного соединения.

Начиная с описания структуры программы для Arduino на языке C, этот блокнот содержит описание синтаксиса наиболее общих элементов языка и иллюстрирует их использование в примерах и фрагментах кода. Блокнот содержит примеры функций ядра библиотеки Arduino, а в приложении приводятся примеры схем и начальных программ.

Аналоговые интерфейсы микроконтроллеров

Данное издание является практическим пособием по применению различных интерфейсов для подключения аналоговых периферийных устройств к компьютерам, микропроцессорам и микроконтроллерам.

Раскрывается специфика применения таких интерфейсов, как I2C, SPI/Microware, SMBus, RS-232/485/422, токовая петля 4-20 мА и др. Дается обзор большого количества современных датчиков: температурных, оптических, ПЗС, магнитных, тензодатчиков и т. д. Подробно описываются контроллеры, АЦП и ЦАПы, их элементы — УВХ, ИОН, кодеки, энкодеры.

Рассмотрены исполнительные устройства — двигатели, терморегуляторы — и вопросы их управления в составе систем автоматического управления различного типа (релейного, пропорционального и ПИД). Книга снабжена иллюстрациями, наглядно представляющими аппаратные и программные особенности применения элементов аналоговой и цифровой техники. Заинтересует не только начинающих радиолюбителей, но и специалистов, имеющих стаж работы с аналоговой и цифровой техникой, а также студентов технических колледжей и вузов.

Руководство по использованию АТ-команд для GSM/GPRS модемов

В этом пособии изложено детальное описание полного набора АТ команд для работы с модемами компании Wavecom. Приведены специальные АТ команды для работы с протоколами стека IP, программно реализованными в модемах Wavecom.

Книга ориентирована на разработчиков, создающих программные и программно-аппаратные приложения на базе продукции Wavecom. Руководство так же рекомендуется инженерам, отвечающим за эксплуатацию систем различного назначения, применяющим в качестве канала передачи данных сети GSM. Отличный справочник для студентов, которые используют в своей курсовой или дипломной работе тематику передачи данных в GSM сетях.

Расскажи о нас

Сообщение

Если у Вас есть опыт в работе с Arduino и собственно есть время для творчества, мы приглашаем всех желающих стать авторами статей публикуемых на нашем портале. Это могут быть как уроки, так и рассказы о ваших экспериментах с Arduino. Описание различных датчиков и модулей. Советы и наставления начинающим. Пишите и размещайте свои статьи в .